
MATLAB® 7
MAT-File Format

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
MAT-File Format
© COPYRIGHT 1999–2009 by The MathWorks™, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
June 1999 Online only New for MATLAB® 5.3 (Release 11)
November 2000 PDF only Revised for MATLAB® 6.0 (Release 12)
June 2001 PDF only Revised for MATLAB® 6.1 (Release 12.1)
July 2002 PDF only Revised for MATLAB® 6.5 (Release 13)
January 2003 PDF only Revised for MATLAB® 6.5.1 (Release 13 SP1)
June 2004 PDF only Revised for MATLAB® 7.0 (Release 14)
October 2004 PDF only Revised for MATLAB® 7.0.1 (Release 14SP1)
September 2005 PDF only Minor revision for MATLAB® 7.1 (Release 14SP3)
September 2007 PDF only Rereleased for Version 7.5 (Release 2007b)
March 2008 PDF only Revised for Version 7.6 (Release 2008a)
October 2008 PDF only Rereleased for Version 7.7 (Release 2008b)
March 2009 PDF only Rereleased for Version 7.8 (Release 2009a)

1

MAT-File Format

Introduction (p. 1-2) Describes Level 5 and Level 4
MAT-files and how to access them.

Level 5 MAT-File Format (p. 1-4) Describes the internal format of
MAT-files that are compatible with
MATLAB® Versions 5 and up.

Level 5 MATLAB Array Data
Element Formats (p. 1-14)

Shows how to use the Array data
type to represent all types of
MATLAB arrays.

Level 4 MAT-File Format (p. 1-37) Describes the internal format of
MAT-files that are compatible with
MATLAB Versions 4 and earlier.

1 MAT-File Format

Introduction
This document describes the internal format of MATLAB Level 4 and Level 5
MAT-files. Level 4 MAT-files are compatible with versions of MATLAB up
to Version 4. Level 5 MAT-files are compatible with MATLAB Versions 5
and up. You can read and write Level 4 MAT-files with the later versions of
MATLAB, but when writing a MAT-file under these circumstances, you need
to specify a switch in the save or matOpen command line to tell MATLAB
that the MAT-file is at Level 4.

A MAT-file stores data in binary (not human-readable) form. In MATLAB,
you create MAT-files using the save function, which writes the arrays
currently in memory to a file as a continuous byte stream. By convention,
this file has the filename extension .mat; thus the name MAT-file. The load
function reads the arrays from a MAT-file into the MATLAB workspace.

Most MATLAB users do not need to know the internal format of a MAT-file.
Even users who must read and write MAT-files from C and Fortran programs
do not need to know the MAT-file format if they use the MAT-file interface.
This interface shields users from dependence on the details of the MAT-file
format.

Note See "Importing and Exporting Data" in the MATLAB External
Interfaces documentation for information on the MAT-file interface. See "C [or
Fortran] MAT-File Functions" in the MATLAB External Interfaces Reference
documentation for information on the functions available with this interface.

However, if you need to read or write MAT-files on a system that does not
support the MAT-file interface, you must write your own read and write
routines. The MAT-file interface is only available for platforms on which
MATLAB is supported. This document provides the details about the MAT-file
format you will need to read and write MAT-files on these systems.

1-2

Introduction

Note Whenever possible, The MathWorks strongly advises you to use the
MAT-file interface functions to read and write MAT-files. Any code you write
that depends on the MAT-file format may need to be rewritten when the
format changes in future releases.

MAT-File Formats
This document describes both Level 5 and Level 4 MAT-file formats. The
Level 5 MAT-file format supports all the array types supported in MATLAB
Versions 5 and up, including multidimensional numeric arrays, character
arrays, sparse arrays, cell arrays, structures, and objects. “Level 5 MAT-File
Format” on page 1-4 describes this format.

The Level 4 MAT-file format is a simpler format, but it only supports
two-dimensional matrices and character strings. “Level 4 MAT-File Format”
on page 1-37 describes this format.

1-3

1 MAT-File Format

Level 5 MAT-File Format
Level 5 MAT-files are made up of a 128-byte header followed by one or more
data elements. Each data element is composed of an 8-byte tag followed by the
data in the element. The tag specifies the number of bytes in the data element
and how these bytes should be interpreted; that is, should the bytes be read
as 16-bit values, 32-bit values, floating-point values or some other data type.

By using tags, the Level 5 MAT-file format provides quick access to individual
data elements within a MAT-file. You can move through a MAT-file by finding
a tag, and then skipping ahead the specified number of bytes until the next
tag.

MATLAB® Level 5 MAT-File Format on page 1-6 graphically illustrates this
MAT-file format. The sections that follow provide more details about these
MAT-file elements:

1-4

• “MAT-File Header Format” on page 1-7

• “Data Element Format” on page 1-8

• “Data Compression” on page 1-12

1-5

1 MAT-File Format

1
Bytes

2 3 4 5 6 7 8

Data (variable size) or subelements

Repeat tagged data elements until end-of-file

subsys data offset

subsys data offset

data type number of bytes

version endian indicator

Data
elem

ent

Data (variable size) or subelements

Descriptive text (116 bytes)

data type number of bytes Data
elem

ent
M

AT-file header (128 bytes)

Figure 1-1: MATLAB® Level 5 MAT-File Format

1-6

MAT-File Header Format
Level 5 MAT-files begin with a 128-byte header made up of a 124-byte text
field and two, 16-bit flag fields.

This section covers the following topics:

• “Header Text Field” on page 1-7

• “Header Subsystem Data Offset Field” on page 1-8

• “Header Flag Fields” on page 1-8

Header Text Field
The first 116 bytes of the header can contain text data in human-readable
form. This text typically provides information that describes how the
MAT-file was created. For example, MAT-files created by MATLAB include
the following information in their headers:

• Level of the MAT-file (value equals 1 for Level 5)

• Platform on which the file was created

• Date and time the file was created

You can view the text in a MAT-file header using the cat command on UNIX®
systems, or the type command on a PC. The output displays the text in this
part of the header. (The display of the header is followed by unreadable
characters representing the binary data in the file.)

cat my_matfile.mat
MATLAB 5.0 MAT-file, Platform: SOL2, Created on: Thu Nov 13
10:10:27 1997

Note When creating a MAT-file, you must write data in the first 4 bytes of
this header. MATLAB uses these bytes to determine if a MAT-file uses a
Level 5 format or a Level 4 format. If any of these bytes contains a zero,
MATLAB will incorrectly assume the file is a Level 4 MAT-file.

1-7

1 MAT-File Format

Header Subsystem Data Offset Field
Bytes 117 through 124 of the header contain an offset to subsystem-specific
data in the MAT-file. All zeros or all spaces in this field indicate that there is
no subsystem-specific data stored in the file.

Header Flag Fields
The last 4 bytes in the header are divided into two, 16-bit flag fields (int16).

Field Value

Version When creating a MAT-file, set this field to 0x0100.
Endian
Indicator

Contains the two characters, M and I, written to the
MAT-file in this order, as a 16-bit value. If, when read from
the MAT-file as a 16-bit value, the characters appear in
reversed order (IM rather than MI), it indicates that the
program reading the MAT-file must perform byte-swapping
to interpret the data in the MAT-file correctly.

Note Programs that create MAT-files always write data in their native
machine format. Programs that read MAT-files are responsible for
byte-swapping.

Data Element Format
Each data element begins with an 8-byte tag followed immediately by the
data in the element. Figure 1-2 shows this format. (MATLAB also supports a
compressed data element format. See “Small Data Element Format” on page
1-11 for more information.)

1-8

1
Bytes

2 3 4 5 6 7 8

variable size

Tag

Data

data type number of bytes

Figure 1-2: MAT-File Data Element Format

This section covers the following topics:

• “The Tag Field” on page 1-9

• “The Data Field” on page 1-11

• “Small Data Element Format” on page 1-11

• “Example Data Element” on page 1-12

The Tag Field
The 8-byte data element tag is composed of two, 32-bit fields:

• Data Type

• Number of Bytes

Data Type. The Data Type field specifies how the data in the element should
be interpreted, that is, its size and format. The MAT-file format supports
many data types including signed and unsigned, 8-bit, 16-bit, 32-bit, and
64-bit data types, a special data type that represents MATLAB arrays,
Unicode® encoded character data, and data stored in compressed format. The
MAT-File Data Types on page 1-9 table lists all these data types with the
values used to specify them. The table also includes symbols that are used to
represent these data types in the examples in this document.

Table 1-1 MAT-File Data Types

Value Symbol MAT-File Data Type

1 miINT8 8 bit, signed

1-9

1 MAT-File Format

Table 1-1 MAT-File Data Types (Continued)

Value Symbol MAT-File Data Type

2 miUINT8 8 bit, unsigned
3 miINT16 16-bit, signed
4 miUINT16 16-bit, unsigned
5 miINT32 32-bit, signed
6 miUINT32 32-bit, unsigned
7 miSINGLE IEEE® 754 single format
8 -- Reserved
9 miDOUBLE IEEE 754 double format
10 -- Reserved
11 -- Reserved
12 miINT64 64-bit, signed
13 miUINT64 64-bit, unsigned
14 miMATRIX MATLAB array
15 miCOMPRESSED Compressed Data
16 miUTF8 Unicode UTF-8 Encoded Character Data
17 miUTF16 Unicode UTF-16 Encoded Character

Data
18 miUTF32 Unicode UTF-32 Encoded Character

Data

The UTF-16 and UTF-32 encodings are in the byte order specified by the
Endian Indicator (See “Header Flag Fields” on page 1-8). UTF-8 is byte order
neutral.

For character data that is not Unicode encoded, the Data Type part of the
Tag field should be set to miUINT16.

For more information about the miMATRIX data type, see “Level 5 MATLAB
Array Data Element Formats” on page 1-14.

1-10

Number of Bytes. The Number of Bytes field is a 32-bit value that specifies
the number of bytes of data in the element. This value does not include the 8
bytes of the data element’s tag.

If Data Type is miCOMPRESSED, then the Number of Bytes field contains the
compressed MATLAB array size in bytes. (See “Data Compression” on page
1-12.)

The Data Field
The data immediately follows the tag. All data that is uncompressed must
be aligned on 64-bit boundaries. When writing a MAT-file, if the amount of
data in a data element falls short of a 64-bit boundary, you must add bytes
of padding to make sure the tag of the next data element falls on a 64-bit
boundary. Likewise, when reading data from a MAT-file, be sure to account
for these padding bytes.

Note For data elements representing MATLAB arrays, (type miMATRIX), the
value of the Number of Bytes field includes padding bytes in the total. For
all other MAT-file data types, the value of the Number of Bytes field does not
include padding bytes.

Small Data Element Format
If a data element takes up only 1 to 4 bytes, MATLAB saves storage space
by storing the data in an 8-byte format. In this format, the Data Type and
Number of Bytes fields are stored as 16-bit values, freeing 4 bytes in the tag
in which to store the data. Figure 4 illustrates this format.

1
Bytes

2 3 4 5 6 7 8

number of bytes data type data

Figure 1-3: Small Data Element Format

1-11

1 MAT-File Format

Note When reading a MAT-file, you can tell if you are processing a small
data element by comparing the value of the first 2 bytes of the tag with the
value zero (0). If these 2 bytes are not zero, the tag uses the small data
element format. When writing to a MAT-file, use of the small data element
format is optional.

Example Data Element
Figure 1-4 illustrates a data element representing an array of six 32-bit,
unsigned integers: 1, 2, 3, 4, 5, 6. In the figure, the Data Type field contains
the value from MAT-File Data Types on page 1-9 that specifies unsigned,
32-bit integers (miUINT32). The Number of Bytes field in the data element tag
contains the number of data values multiplied by the number of bytes used
to represent each value. Note that this value does not include the 8 bytes in
the data element tag.

1
Bytes

2 3 4 5 6 7

number of bytesdata type

8

Tag

Data

miUINT32 24

1 2

3 4

5 6

Figure 1-4: Example MAT-File Data Element

Data Compression
MATLAB compresses the data it saves to a MAT-file using buffered in-memory
gzip compression. It compresses MATLAB variables transparently as they
are written out to disk. This technique uses less memory than systems that
compress an entire variable at once before writing it out to disk. Also, no
temporary files are required to read or write compressed data.

Because it compresses each variable individually, MATLAB can read a
compressed MAT-file like any other MAT-file. No code changes are required
at either the C or M level to read a compressed MAT-file.

1-12

MATLAB compresses data for MAT-files (file I/O) only, not for sequential
streams. The reason for this is that the size of the compressed variable is
known only after it is compressed, but it must be written in the tag at the
beginning of the variable. In a file it is possible to seek back and write the
size, while in a stream this cannot be done.

MAT-files containing compressed variables are nonplatform specific like any
MAT-file, and such a file saved on any MATLAB supported platform can be
loaded on any other supported platform.

To decompress the contents of a compressed variable in a MAT-file, you can
use the uncompress function from the freeware zlib-1.1.4 library available
at the gzip web site, http://www.gzip.org/zlib/. Once a MATLAB array has
been decompressed, you can ignore the miCOMPRESSED tag and process the
data normally, as if it had not been compressed.

Note To disable data compression when writing to MAT-files, see "Saving and
Loading MAT-files" in the "Data Import and Export" chapter of the MATLAB
Programming Fundamentals documentation.

Storing Compressed Data
MATLAB stores compressed data in gzip-compressed MATLAB arrays. Each
compressed variable is stored complete with its tags and data field in the same
format as uncompressed variables, as described in “Data Element Format” on
page 1-8. The difference is that the entire variable is compressed into a data
buffer, and this buffer is preceded by an 8-byte tag named miCOMPRESSED. The
tag contains the length of the compressed buffer.

Each variable in a MAT-file has a 56-byte header. Even if the data is stored in
the header itself, as can be the case for variables containing 1 to 4 bytes of
data, no variable in a MAT-file can be less than 56 bytes. Thus, regardless of
how random the data in a variable may be, it is unlikely (but not impossible)
that a compressed variable will take more space than its uncompressed
counterpart. This is because the 56-byte header always compresses to a
smaller size. Note that compression works best on nonrandom data. The
more random the data, the less it will compress.

1-13

http://www.gzip.org/zlib/

1 MAT-File Format

Level 5 MATLAB Array Data Element Formats
The MAT-file data type miMATRIX (14) is used to represent all types of
MATLAB arrays, including:

• Numeric arrays

• Character arrays

• Sparse arrays

• Cell arrays

• Structures

• Objects

The miMATRIX data type is a compound data type. MAT-file data elements of
this type are composed of multiple subelements. The subelements can be of
any other MAT-file data type, including other miMATRIX data types.

Figure 1-5 shows a miMATRIX data element composed of three subelements.
Note how each subelement is a data element with its own tag. The value of
the Number of Bytes field (96 in the figure) in the data element tag includes
all the subelements.

1-14

Level 5 MATLAB® Array Data Element Formats

Data elem
ent

miMATRIX

1
Bytes

2 3 4 5

96
 b

yt
es

6 7 8

96

Subelem
ent

Subelem
ent

Tag
Sub-

elem
ent

tag

data

tag

tag

data

data

Figure 1-5: MATLAB® Array Data Element with Subelements

Each miMATRIX data element representing the different types of MATLAB
arrays each has a specific set of subelements. Some of these subelements
are common to all MATLAB arrays. Others subelements are unique to a
particular type of array. The following sections detail the subelements for
each MATLAB array type.

Numeric Array and Character Array Data Element
Formats
A MAT-file data element representing a MATLAB numeric array or character
array is composed of four subelements and one optional subelement. Table
1-2 lists the subelements in the order in which they appear in the data
element. The table also includes the values of the Data Type and Number of
Bytes fields you would use in the tag of each subelement. For an example, see
“Examples of Numeric Array Data Elements” on page 1-20.

1-15

1 MAT-File Format

Table 1-2 Numeric and Character Array Subelements with Tag Data

Subelement Data Type Number of Bytes

Array Flags miUINT32 2 * sizeOfDataType (8 bytes)

Dimensions Array miINT32 numberOfDimensions * sizeOfDataType
(To learn how to determine the number
of dimensions, see “Dimensions Array
Subelement” on page 1-18.)

Array Name miINT8 numberOfCharacters * sizeOfDataType

Real part (pr) Any of the numeric data
types.

numberOfValues * sizeOfDataType

Imaginary part (pi)
(Optional)

Any of the numeric data
types.

numberOfvalues * sizeOfDataType

Array Flags Subelement
This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. The Array
Flags subelement is common to all array types.

Figure 1-6 illustrates the format of the Array Flags subelement. (For sparse
matrices, bytes 5 through 8 are used to store the maximum number of nonzero
elements in the matrix. See “Sparse Array Data Element Format” on page
1-22 for more information.)

1
Bytes

2 3 4 5 6 7 8

undefined flags class undefined

Bits
5 64321 7 8

globalcomplex logicalundefined

Figure 1-6: Array Flags Format

1-16

Level 5 MATLAB® Array Data Element Formats

Flags. This field contains three, single-bit flags that indicate whether the
numeric data is complex, global, or logical. If the complex bit is set, the data
element includes an imaginary part (pi). If the global bit is set, MATLAB
loads the data element as a global variable in the base workspace. If the
logical bit is set, it indicates the array is used for logical indexing.

Class. This field contains a value that identifies the MATLAB array type
(class) represented by the data element. Table 1-3 lists the MATLAB array
types with the values you use to specify them. The table also includes symbols
that are used to represent the MATLAB array type in the examples in this
document.

Note The value of the Class field identifies the MATLAB data type. The
value of the Data Type field in the data element tag identifies the data type
used to store the data in the MAT-file. The MAT-file data types are listed in
Table 1-1. The value of the Class and the Data Type fields do not need to be
the same; for more information, see “Automatic Compression of Numeric
Data” on page 1-19.

Table 1-3 MATLAB Array Types (Classes)

MATLAB Array Type (Class) Value Symbol

Cell array 1 mxCELL_CLASS

Structure 2 mxSTRUCT_CLASS

Object 3 mxOBJECT_CLASS

Character array 4 mxCHAR_CLASS

Sparse array 5 mxSPARSE_CLASS

Double precision array 6 mxDOUBLE_CLASS

Single precision array 7 mxSINGLE_CLASS

8-bit, signed integer 8 mxINT8_CLASS

8-bit, unsigned integer 9 mxUINT8_CLASS

16-bit, signed integer 10 mxINT16_CLASS

1-17

1 MAT-File Format

Table 1-3 MATLAB Array Types (Classes) (Continued)

MATLAB Array Type (Class) Value Symbol

16-bit, unsigned integer 11 mxUINT16_CLASS

32-bit, signed integer 12 mxINT32_CLASS

32-bit unsigned, integer 13 mxUINT32_CLASS

For numeric arrays, Class can contain any of the numeric array types:
mxDOUBLE_CLASS, mxSINGLE_CLASS, mxINT8_CLASS, mxUINT8_CLASS,
mxINT16_CLASS, mxUINT16_CLASS, mxINT32_CLASS, or mxUINT32_CLASS.

For character arrays, Class contains mxCHAR_CLASS.

Dimensions Array Subelement
This subelement specifies the size of each dimension of an n-dimensional
array in an n-sized array of 32-bit values (miINT32). All numeric arrays have
at least two dimensions. The Dimensions Array subelement is common to all
MATLAB array types.

For example, if a data element represents a 2-by-3-by-2 MATLAB array, the
Dimensions Array subelement would contain three values: 2, 3, and 2.

Note To calculate the number of dimensions in an array, divide the value
stored in the Number of Bytes field in the Dimensions Array subelement tag
by 4, the number of bytes in the data type (miINT32) used in the subelement.

Array Name Subelement
This subelement specifies the name assigned to the array, as an array of
signed, 8-bit values (miINT8). This subelement is common to all array types.

Real Part (pr) Subelement
This subelement contains the numeric data in the MATLAB array. If the
array contains complex numbers (the complex bit in the Array Flags is set),
this is the real part of the number.

1-18

Level 5 MATLAB® Array Data Element Formats

The data type of the values can be any of the numeric data types listed in
MAT-File Data Types on page 1-9.

For character data that is not Unicode encoded, the Data Type part of the
Tag field should be set to miUINT16.

Imaginary Part (pi) Subelement
This subelement contains the imaginary part of the numeric data in the
MATLAB array. This subelement is only present if one or more of the numeric
values in the MATLAB array is a complex number (if the complex bit is set
in Array Flags). The data type of the values can be any of the numeric data
types listed in MAT-File Data Types on page 1-9.

Note When reading a MAT-file, check the value of the Data Type field in the
tag of Real Part and Imaginary Part subelements to identify the data type
used to store data. Also note that MATLAB reads and writes these values in
column-major order.

Automatic Compression of Numeric Data
MATLAB stores the numeric data in an array in double-precision format.
When MATLAB writes a numeric (or sparse) array to a MAT-file, ````it uses
the smallest one of miINT32, miUINT16, miINT16, or miUINT8 to store the data,
both the real and imaginary parts.

For example, if MATLAB determines that the data stored in double-precision
format can actually be stored in an 8-bit format, it will use an miUINT8 to store
it in a MAT-file. Note, however, that if any of the numeric values in the array
requires a 64-bit representation, MATLAB stores all of the data in a 64-bit
data type. See “Compressed Data Element” on page 1-21 for an example.

When you create a MAT-file, compressing data is optional.

1-19

1 MAT-File Format

Note When MATLAB uses a smaller data type to store data in a MAT-file,
the value of the Class field in the Array Flags subelement identifies the
original MATLAB data type.

Examples of Numeric Array Data Elements
This section uses examples to illustrate both the compressed and
uncompressed numeric array data element formats.

Uncompressed Data Element. Figure 1-7 shows how this 2-by-2 numeric
array, my_array, is represented in a MAT-file.

my_array = [1.1+1.1i 2 ; 3 4]

my_array =

1.1000 + 1.1000i 2.0000
3.0000 4.0000

In the figure, note:

• The data element includes five subelements. Because one of the numeric
values in the array is a complex number, the complex bit flag in the Array
Flags subelement is set and the Imaginary Part (pi) subelement is included.

• The value of the Number of Bytes field in the data element tag includes all
the subelements, but not the 8 bytes of the tag itself.

1-20

Level 5 MATLAB® Array Data Element Formats

miMATRIX

1
Bytes

2 3 4 5

Array
flags

12
8

by
te

s
Ta

g

6 7 8

128

miDOUBLE 32

1.1000

3.0000

2.0000

4.0000

miDOUBLE 32

1.1000

0.0000

0.0000

0.0000

miUINT32

mxDOUBLE

_CLASS

8

miINT32 8

miINT8 8

2

m y _ a r r a y

2

undefined undefined

Dimensions
array

Array
name

pr

pi

Figure 1-7: Example Numeric Array MAT-File Data Element

Compressed Data Element. Figure 1-8 shows how the three-dimensional
numeric array in this example, arr, is represented in a MAT-file when
compression is used to conserve storage space.

A = [1 2 3 ; 4 5 6];
B = [7 8 9 ; 10 11 12];
arr = cat(3,A,B)
arr(:,:,1) =

1 2 3

1-21

1 MAT-File Format

4 5 6

arr(:,:,2) =
7 8 9

10 11 12

In the figure, note:

• The Array Name subelement uses the compressed data element format.

• The numeric data in the array, stored in double-precision format in
MATLAB, is stored as 8-bit, unsigned values in the pr subelement. The
Class field in the Array Flags subelement identifies the original MATLAB
data type.

miMATRIX

1
Bytes

2 3 4 5

Array
flags

72
 b

yt
es

Ta
g

6 7 8

72

padding

padding

2

miUINT32

mxDOUBLE

_CLASS

8

miINT32 12

2 3

undefined 0 undefined

miUINT8 12

Dimensions
array

pr

Array namemiINT83 A R R

1 4 2 5

8 11 9 12

3 6 7 10

padding

Figure 1-8: Example Numeric Array MAT-file Data Element (Compressed)

Sparse Array Data Element Format
A MAT-file data element representing a MATLAB sparse array is composed of
six subelements and one optional subelement. Table 1-4 lists the subelements
in the order in which they appear in the data element. The table lists the

1-22

Level 5 MATLAB® Array Data Element Formats

values of the Data Type and Number of Bytes fields of the tag for each
subelement.

Table 1-4 Sparse Array Subelements with Tag Data

Subelement Data Type Number of Bytes

Array Flags miUINT32 2 * sizeOfDataType (8 bytes)

Dimensions Array miINT32 numberOfDimensions * sizeOfDataType
where numberOfdimensions can be 0, 1 or 2.

Array Name miINT8 numberOfcharacters * sizeOfDataType

Row Index (ir) miINT32 nzmax * sizeOfDataType
(The nzmax value is stored in Array Flags.)

Column Index (jc) miINT32 (N+1) * sizeof(int32)
where N is the second element of the
Dimensions array subelement.

Real part (pr) Any numeric
data type

numberOfNonzeroValues *
sizeOfDataType

Imaginary part (pi)
(Optional)

Any numeric
data type

numberOfNonzeroValues *
sizeOfDataType

Array Flags Subelement
This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. The Array
Flags subelement is common to all array types.

Figure 1-9 shows the Array Flags format. For sparse arrays, this value also
contains the maximum number of nonzero elements in the array (nzmax).

1
Bytes

2 3 4 5 6 7 8

reserved flags class nzmax

Maximum number of nonzero array elements

Figure 1-9: Array Flags Format for Sparse Arrays

1-23

1 MAT-File Format

Flag. For more information, see “Flags” on page 1-17.

Class. This field contains a value that identifies the MATLAB data type
represented by the data element. For sparse arrays, Class contains the value
5 (mxSPARSE_CLASS). See “Class” on page 1-17 for more information.

Dimensions Array Subelement
This subelement specifies the size of each dimension of the array. This
subelement is common to all array types. For more information, see
“Dimensions Array Subelement” on page 1-18.

Note that MATLAB only supports two-dimensional sparse arrays.

Array Name Subelement
This subelement specifies the name assigned to the array. This subelement
is common to all array types. For more information, see “Array Name
Subelement” on page 1-18.

Row Index for Nonzero Values (ir) Subelement
This subelement specifies the row indices of the nonzero elements in the real
part (pr) of the matrix data and the imaginary part (pi) of the matrix data, if
present. This subelement is a series of 32-bit (miINT32) values.

Column Index for Nonzero Values (jc) Subelement
This subelement contains column index information as a series of 32-bit
(miINT32) values. For more information about what this subelement contains,
see the MATLAB Application Program Interface Guide.

Real Part (pr) Subelement
This subelement contains the numeric data in the MATLAB array. If the
array contains complex numbers (the complex bit in the Array Flags is set),
this is the real part of the number.

Because MATLAB uses data compression to save storage space, the data type
of the values can be any of the numeric data types listed in MAT-File Data

1-24

Level 5 MATLAB® Array Data Element Formats

Types on page 1-9. For more information, see “Automatic Compression of
Numeric Data” on page 1-19.

Imaginary Part (pi) Subelement
This subelement contains the imaginary data in the array, if one or more
of the numeric values in the MATLAB array is a complex number (if the
complex bit is set in Array Flags).

Because MATLAB uses data compression to save storage space, the data type
of the values can be any of the numeric data types listed in MAT-File Data
Types on page 1-9. For more information, see “Automatic Compression of
Numeric Data” on page 1-19.

Note You must check the value of the Data Type field in the tag of Real Part
and Imaginary Part subelements to identify the type of the data. Also note
that MATLAB reads and writes these values in column-major order.

Example Sparse Array
Figure 1-10 illustrates the MAT-file data element format of this 3-by-3 sparse
matrix:

a = [1 2 3];
S = sparse(a,a,a+.5)

S =

(1,1) 1.5000
(2,2) 2.5000
(3,3) 3.5000

In the figure, note:

• The data element contains six subelements.

• The value of the Number of Bytes field in the data element tag includes all
the subelements, but not the 8 bytes of the tag itself.

1-25

1 MAT-File Format

• Bytes 5 through 8 of the Array Flags subelement contain the maximum
number of nonzero elements (nzmax) in the sparse array.

• The Array Name subelement uses the compressed data element format.

miMATRIX

1
Bytes

2 3 4 5

Array
flags

12
0

by
te

s
Ta

g
6 7 8

120

0 1

miINT32 12

2

miINT32 16

0 1

2 3

miDOUBLE 24

1.5000

2.5000

3.5000

miUINT32

mxSPARSE

_CLASS

8

miINT32 8

3 3

undefined 0 3 (nzmax)

padding

Dimensions
array

Array name

jc

ir

pr

paddingSmiINT81

Figure 1-10: Example Sparse Array MAT-file Data Element

Cell Array Data Element Format
A MAT-file data element representing a MATLAB cell array is composed of
four subelements. Table 1-5 lists the subelements in the order in which they
appear in the data element. The table lists the values of the Data Type and
Number of Bytes fields of the tag for each subelement.

1-26

Level 5 MATLAB® Array Data Element Formats

Table 1-5 Cell Array Subelements with Tag Data

Subelement Data Type Number of Bytes

Array Flags miUINT32 2 * sizeOfDataType (8 bytes)

Dimensions Array miINT32 numberOfDimensions * sizeOfDataType

Array Name miINT8 numberOfcharacters * sizeOfDataType

Cells Each cell is written in place as an miMATRIX element.

Array Flags Subelement
This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. Figure 1-11
shows the Array Flags format. The Array Flags subelement is common to
all array types.

1
Bytes

2 3 4 5 6 7 8

undefined flags class undefined

Figure 1-11: Array Flags Format

Flags. See “Flags” on page 1-17 for more information.

Class. This field contains a value that identifies the MATLAB data type
represented by the data element. For cell arrays, Class contains the value 1
(mxCELL_CLASS). For more information, see “Class” on page 1-17.

Dimensions Array Subelement
This subelement specifies the size of each dimension of the array. This
subelement is common to all array types. For more information, see
“Dimensions Array Subelement” on page 1-18.

Array Name Subelement
This subelement specifies the name assigned to the array. This subelement
is common to all array types. For more information, see “Array Name
Subelement” on page 1-18.

1-27

1 MAT-File Format

Cells Subelement
This subelement contains the value stored in a cell. These values are
MATLAB arrays, represented using the miMATRIX format specific to the
array type: numeric array, sparse array, structure, object or other cell
array. See the appropriate section in this document for details about the
MAT-file representation of a each of these array types. Cells are written in
column-major order.

Example Cell Array
Figure 1-12 illustrates the MAT-file data element format of this cell array:

A = [1 2 3 ; 4 5 6]
A =

1 2 3
4 5 6

B = [7 8 9 ; 10 11 12]
B =

7 8 9
10 11 12

C = { A, B }
C =

[2x3 double] [2x3 double]

In the figure, note:

• The data element contains five subelements, the three common
subelements; Array Flags, Dimensions and Array Name; and two cell
subelements.

• The value of the Number of Bytes field in the data element tag includes all
the subelements, but not the 8 bytes of the tag itself.

• Each cell subelement is an miMATRIX type. In the example, each cell
contains a numeric array. For more information about the format of
these elements, see “Numeric Array and Character Array Data Element
Formats” on page 1-15.

1-28

Level 5 MATLAB® Array Data Element Formats

miMATRIX

1
Bytes

2 3 4 5

Array
flags

16
8

by
te

s
Ta

g

6 7 8

168

undefined undefined

miMATRIX 56

miINT32

2 3

miUINT8 6

miUINT32

mxCELL

_CLASS

8

miUINT32 8

miINT32 8

1 2

mxDOUBLE

_CLASS

undefined 0 undefined

8

miUINT8 6

Dimensions
array

Array name

miMATRIX 56

miUINT32 8

miINT32 8

2 3

paddingC

0

undefined undefined
mxDOUBLE

_CLASS
0

miINT81

padding8miINT81

paddingAmiINT81

padding3 62 51 4

padding9 128 117 10

Cells

N
um

eric array
N

um
eric array

Figure 1-12: Example Cell Array Data Element

1-29

1 MAT-File Format

Structure MAT-File Data Element Format
A MAT-file data element representing a MATLAB structure is composed of
six subelements. Table 1-6 lists the subelements in the order in which they
appear in the data element. The table lists the values of the Data Type and
Number of Bytes fields of the tag for each subelement.

Table 1-6 Structure Subelements with Tag Data

Subelements Data Type Number of Bytes

Array Flags miUINT32 2*sizeOfDataType (8 bytes)

Dimensions Array miINT32 numberOfDimensions * sizeOfDataType

Array Name miINT8 numberOfCharacters * sizeOfDataType

Field Name Length miINT32 sizeOfDataType (4 bytes)

Field Names miINT8 numberOfFields * FieldNameLength

Fields Each field is written in place as an array. Fields are written in column
order.

Array Flags Subelement
This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. Figure 1-13
shows the Array Flags format. The Array Flags subelement is common to
all array types.

1
Bytes

2 3 4 5 6 7 8

undefined flags class undefined

Figure 1-13: Array Flags Format

Flags. See “Flags” on page 1-17 for more information.

Class. This field contains a value that identifies the MATLAB data type
represented by the data element. For structures, Class contains the value 2
(mxSTRUCT_CLASS). For more information, see “Class” on page 1-17.

1-30

Level 5 MATLAB® Array Data Element Formats

Dimensions Array Subelement
This subelements Specifies the size of each dimension of the array. This
subelement is common to all array types. For more information, see
“Dimensions Array Subelement” on page 1-18.

Array Name Subelement
This subelement specifies the name assigned to the structure. This
subelement is common to all array types. For more information, see “Array
Name Subelement” on page 1-18.

Field Name Length Subelement
This subelement specifies the maximum length of a Field Name. MATLAB
sets this limit to 32 (31 characters and a NULL terminator). In a MAT-file
created by MATLAB, this subelement always uses the compressed data
element format.

Field Names Subelement
This subelement specifies the name of each field in the structure as a series
of 8-bit (miINT8) character arrays. The value of the Field Name Length
subelement determines the length of each field name array (32 bytes). Field
names must be NULL-terminated.

Fields Subelement
This subelement contains the value stored in a field. These values are
MATLAB arrays, represented using the miMATRIX format specific to the
array type: numeric array, sparse array, cell, object or other structure. See
the appropriate section of this document for details about the MAT-file
format of each of these array type. MATLAB reads and writes these fields in
column-major order.

Example
Figure 1-14 illustrates the MAT-file data element format for this MATLAB
structure:

X.w = [1];
X.y = [2];

1-31

1 MAT-File Format

X.z = [3];
X

X =
w: 1
y: 2
z: 3

In the figure, note:

• The data element contains eight subelements: the three common
subelements (Array Flags, Dimensions and Array Name) and five
structure-specific subelements (Field Name Length, Field Names, and
three Field subelements).

• The value of the Number of Bytes field in the data element tag includes all
the subelements, but not the 8 bytes of the tag itself.

• The Field Names subelement allocates 32 bytes of storage for each field
name. A NULL terminator indicates the end of each field name.

• Each Field subelement is an miMATRIX data type. In the example, each
field contains a numeric array. For more information about the format of
these elements, see “Numeric Array and Character Array Data Element
Formats” on page 1-15.

• Each of the numeric arrays contain zero-length Array Name subelements.
The Field Names subelement contains the names of the numeric arrays.

1-32

Level 5 MATLAB® Array Data Element Formats

miMATRIX

Array flagsmiUINT32
mxSTRUCT

_CLASS0

miINT32

320

8

32

96

8

1

X

2

miINT8

0miINT8

0miINT8

miMATRIX

miUINT32

48

8

Dimensions
array
Array name

1
Bytes

2 3 4 5 6 7 8

Ta
g

32
0

by
te

s

padding

undefinedundefined

mxDOUBLE
_CLASS0

miINT32 8

11

undefinedundefined

miMATRIX

miUINT32

48

8
mxDOUBLE

_CLASS0

miINT32 8

11

undefinedundefined

miINT8

miINT32

1

1 paddingmiUINT81

2

3

paddingmiUINT81

0miINT8

miMATRIX

miUINT32

48

8
mxDOUBLE

_CLASS0

miINT32 8

11

undefinedundefined

paddingmiUINT81

4

0w

0y

0z

Field name
 length

Field
namespadding

Cells

N
um

eric array
N

um
eric array

N
um

eric array

Figure 1-14: Example Structure MAT-File Data Element

1-33

1 MAT-File Format

MATLAB Object MAT-File Data Element Format
A MAT-file data element representing a MATLAB object is composed of
seven subelements. Table 1-7 lists the subelements in the order in which
they appear in the data element. An object data element has the same
subelements as a structure with the addition of the Class Name subelement.
The table lists the values of the Data Type and Number of Bytes fields of
the tag for each subelement.

Table 1-7 MATLAB Object Subelements with Tag Data

Subelement Data Type Number of Bytes

Array Flags miUINT32 2 * sizeOfDataType (8 bytes)

Dimensions Array miINT32 numberOfDimensions * sizeOfDataType

Array Name miINT8 numberOfCharacters * sizeOfDataType

Class Name miINT8 numberOfCharacters * sizeOfDataType

Field Name Length miINT32 sizeOfDataType (4 bytes)

Field Names miINT8 numberOfFields * FieldNameLength

Fields Each field is written in place as an array.

Array Flags Subelement
This subelement identifies the MATLAB array type (class) represented by the
data element and provides other information about the array. Figure 1-15
shows the Array Flags format. The Array Flags subelement is common to
all array types.

1
Bytes

2 3 4 5 6 7 8

reserved flags class reserved

Figure 1-15: Array Flags Format

Flags. See “Flags” on page 1-17 for more information.

1-34

Level 5 MATLAB® Array Data Element Formats

Class. This field contains a value that identifies the MATLAB data type
represented by the data element. For objects, the Class byte has the value 3
(mxOBJECT_CLASS). For more information, see “Class” on page 1-17.

Dimensions Array Subelement
This subelement specifies the size of each dimension of the array. This
subelement is common to all array types. For more information, see
“Dimensions Array Subelement” on page 1-18.

Array Name Subelement
This subelement specifies the name assigned to the array. This subelement
is common to all array types. For more information, see “Array Name
Subelement” on page 1-18.

Class Name Subelement
This subelement specifies the name assigned to the object class. This
subelement is an array of 8-bit characters (miINT8).

Field Name Length Subelement
This subelement specifies the maximum length of a Field Name. See “Field
Name Length Subelement” on page 1-31 for more information.

Field Names Subelement
This subelement specifies the name of each field in the structure. See “Field
Names Subelement” on page 1-31 for more information.

Fields Subelement
This subelement contains the value stored in a field. See “Fields Subelement”
on page 1-31 for more information.

Example
Figure 1-16 illustrates how the MATLAB object in this example is represented
in a MAT-file.

X = inline(`t^2');

1-35

1 MAT-File Format

The figure only shows the first four subelements of the object. For an example
that shows the remaining subelements, see “Example” on page 1-31.

In the figure, note:

• The Array Flag Class byte is set to mxOBJECT_CLASS.

• The data element includes the Class Name subelement.

miMATRIX

1
Bytes

2 3 4 5

Array
flags

6 7 8

656

The remaining elements are

the same as for a structure

miUINT32

mxOBJECT

_CLASS

8

miINT32 8

miINT8 6

miINT8 X1

1

i n l i n e

1

undefined 0 undefined

Dimensions
array

Class
name

Array name

padding

padding

Figure 1-16: Example Object MAT-file Data Element

1-36

Level 4 MAT-File Format

Level 4 MAT-File Format

Note This section is taken from the MATLAB V4.2 External Interface Guide,
which is no longer available in printed form.

This section presents the internal structure of Level 4 MAT-files. This
information is provided to enable users to read and write MAT-files on
machines for which the MAT-file access routine library is not available. It is
not needed when using the MAT-file subroutine library to read and write
MAT-files, and we strongly advise that you do use the External Interface
Library if it is available for all of the machines that you are working with.

A MAT-file may contain one or more matrices. The matrices are written
sequentially on disk, with the bytes forming a continuous stream. Each
matrix starts with a fixed-length 20-byte header that contains information
describing certain attributes of the Matrix. The 20-byte header consists of five
long (4-byte) integers:

Table 1-8 Level 4 MAT-File Matrix Header Format

Field Description

type The type flag contains an integer whose decimal digits encode storage
information. If the integer is represented as MOPT where M is the thousands digit,
O is the hundreds digit, P is the tens digit, and T is the ones digit, then:
M indicates the numeric format of binary numbers on the machine that wrote the
file. Use this table to determine the number to use for your machine:
0 IEEE Little Endian (PC, 386, 486, DEC Risc)
1 IEEE Big Endian (Macintosh®, SPARC®, Apollo, SGI,

HP 9000/300, other Motorola® systems)
2 VAX D-float
3 VAX G-float
4 Cray
O is always 0 (zero) and is reserved for future use.

1-37

1 MAT-File Format

Table 1-8 Level 4 MAT-File Matrix Header Format (Continued)

Field Description

P indicates which format the data is stored in according to the following table:
0 double-precision (64-bit) floating-point numbers
1 single-precision (32-bit) floating-point numbers
2 32-bit signed integers
3 16-bit signed integers
4 16-bit unsigned integers
5 8-bit unsigned integers
The precision used by the save command depends on the size and type of each
matrix. Matrices with any noninteger entries and matrices with 10,000 or fewer
elements are saved in floating-point formats requiring 8 bytes per real element.
Matrices with all integer entries and more than 10,000 elements are saved in the
following formats, requiring fewer bytes per element.
Element range Bytes per element
[0:255] 1
[0:65535] 2
[-32767:32767] 2
[-2^31+1:2^31-1] 4
other 8
T indicates the matrix type according to the following table:
0 Numeric (Full) matrix
1 Text matrix
2 Sparse matrix
Note that the elements of a text matrix are stored as floating-point numbers
between 0 and 255 representing ASCII-encoded characters.

mrows The row dimension contains an integer with the number of rows in the matrix.
ncols The column dimension contains an integer with the number of columns in the

matrix.

1-38

Level 4 MAT-File Format

Table 1-8 Level 4 MAT-File Matrix Header Format (Continued)

Field Description

imagf The imaginary flag is an integer whose value is either 0 or 1. If 1, then the matrix
has an imaginary part. If 0, there is only real data.

namlen The name length contains an integer with 1 plus the length of the matrix name.

Immediately following the fixed length header is the data whose length is
dependent on the variables in the fixed length header:

Table 1-9 Level 4 MAT-File Matrix Data Format

Field Description

name The matrix name consists of namlen ASCII bytes, the last
one of which must be a null character ('\0').

real Real part of the matrix consists of mrows * ncols numbers
in the format specified by the P element of the type flag.
The data is stored column-wise such that the second
column follows the first column, etc.

imag Imaginary part of the matrix, if any. If the imaginary flag
imagf is nonzero, the imaginary part of a matrix is placed
here. It is stored in the same manner as the real data.

This structure is repeated for each matrix stored in the file.

The following C language code demonstrates how to write a single matrix to
disk in Level 1.0 MAT-file format.

#include <stdio.h>

main() {
typedef struct {

long type;
long mrows;
long ncols;
long imagf;
long namelen;

1-39

1 MAT-File Format

} Fmatrix;

char *pname;
double *pr;
double *pi;
Fmatrix x;
int mn;
FILE *fp;

double real_data = 1.0;
double imag_data = 2.0;

fp = fopen("mymatfile.mat", "wb");
if (fp != NULL) {

pname = "x";
x.type = 1000;
x.mrows = 1;
x.ncols = 1;
x.imagf = 1;
x.namelen = 2;

pr = &real_data;
pi = &imag_data;

fwrite(&x, sizeof(Fmatrix), 1, fp);
fwrite(pname, sizeof(char), x.namelen, fp);

mn = x.mrows *x.ncols;
fwrite(pr, sizeof(double), mn, fp);

if(x.imagf)
fwrite(pi, sizeof(double), mn, fp);

}

else
printf("File could not be opened.\n");

fclose(fp);
}

1-40

Level 4 MAT-File Format

Again, we strongly advise against using this approach, and recommend
that you instead use the MAT-file access routines provided in the External
Interface Library. You will need to write your own C code as shown above only
if you do not have the MAT-file access routines for the particular platform on
which you need to read and write MAT-files.

1-41

1 MAT-File Format

1-42

Index

IndexA
array flags subelement 1-16

in sparse arrays 1-23
array name subelement 1-18

B
byte swapping 1-8

C
cell arrays

example 1-28
MAT-file format 1-26

character arrays
MAT-file format 1-15

classes
MATLAB arrays 1-18

complex numbers
in MAT-files 1-17

compressing data when saving
data storage 1-13
decompressing variables 1-13
description 1-12
miCOMPRESSED data type 1-9
number of bytes 1-11

compression, data element
description 1-11

compression, numeric
description 1-19
example 1-22

D
data elements

alignment 1-11
cell arrays 1-26
character array format 1-15
compressed format 1-11
defined 1-4

format 1-8
MATLAB arrays 1-14
numeric array format 1-15
objects 1-34
padding bytes 1-11
sparse array format 1-22
structures 1-30
subelements 1-14

data types
changed by compression 1-19
MAT-file vs. MATLAB 1-17
used in MAT-files 1-9

dimensions
determining number of 1-18

dimensions array subelement 1-18

E
Endian indicator 1-8

F
field name length

in structure data elements 1-31
field names

in structure data elements 1-31
flags

format 1-17

G
global variables

in MAT-files 1-17

H
header

defined 1-4
flag fields 1-8
format 1-7
text field 1-7

Index-1

Index

I
IEEE 754 double format 1-10
imaginary data

in data element 1-19

L
logical arrays

in MAT-files 1-17

M
MAT-files (V4)

distinguishing from V5 format 1-7
format 1-37

MAT-files (V5)
data types 1-9
distinguishing from V4 format 1-7
header format 1-7
header text field 1-7
numeric array data elements 1-15
overall format 1-4
version field 1-8

MATLAB array types 1-17 to 1-18
data element formats 1-14

miMATRIX 1-14
miMATRIX format 1-14

N
Number of Bytes field

tag 1-11
numeric array

compressed example 1-22
example 1-20

numeric arrays
MAT-file format 1-15

O
objects

MAT-file format 1-34

P
padding bytes

data elements 1-11
including in Number of Bytes total 1-11

pi 1-19
pr 1-18

R
real data

in data element 1-18

S
sparse arrays

example 1-25
in MAT-file 1-22

structures
example 1-31
MAT-file format 1-30

subelements
defined 1-14

T
tags

defined 1-4
format 1-9
number of bytes field 1-11

U
Unicode character encoding 1-9

V
version field

MAT-file V5 format 1-8

Index-2

	toc
	MAT-File Format
	Introduction
	MAT-File Formats

	Level 5 MAT-File Format
	“ MAT-File Header Format ” on page 1- 7
	MAT-File Header Format
	Header Text Field
	Header Subsystem Data Offset Field
	Header Flag Fields

	Data Element Format
	The Tag Field
	The Data Field
	Small Data Element Format
	Example Data Element

	Data Compression
	Storing Compressed Data

	Level 5 MATLAB Array Data Element Formats
	Numeric Array and Character Array Data Element Formats
	Array Flags Subelement
	Dimensions Array Subelement
	Array Name Subelement
	Real Part (pr) Subelement
	Imaginary Part (pi) Subelement
	Automatic Compression of Numeric Data
	Examples of Numeric Array Data Elements

	Sparse Array Data Element Format
	Array Flags Subelement
	Dimensions Array Subelement
	Array Name Subelement
	Row Index for Nonzero Values (ir) Subelement
	Column Index for Nonzero Values (jc) Subelement
	Real Part (pr) Subelement
	Imaginary Part (pi) Subelement
	Example Sparse Array

	Cell Array Data Element Format
	Array Flags Subelement
	Dimensions Array Subelement
	Array Name Subelement
	Cells Subelement
	Example Cell Array

	Structure MAT-File Data Element Format
	Array Flags Subelement
	Dimensions Array Subelement
	Array Name Subelement
	Field Name Length Subelement
	Field Names Subelement
	Fields Subelement
	Example

	MATLAB Object MAT-File Data Element Format
	Array Flags Subelement
	Dimensions Array Subelement
	Array Name Subelement
	Class Name Subelement
	Field Name Length Subelement
	Field Names Subelement
	Fields Subelement
	Example

	Level 4 MAT-File Format

	Index

	tables
	Table 1-1 MAT-File Data Types
	Table 1-2 Numeric and Character Array Subelements with Tag Data
	Table 1-3 MATLAB Array Types (Classes)
	Table 1-4 Sparse Array Subelements with Tag Data
	Table 1-5 Cell Array Subelements with Tag Data
	Table 1-6 Structure Subelements with Tag Data
	Table 1-7 MATLAB Object Subelements with Tag Data
	Table 1-8 Level 4 MAT-File Matrix Header Format
	Table 1-9 Level 4 MAT-File Matrix Data Format

